

The chemical composition of very young open clusters

Martina Baratella (University of Padova - INAF-OAPD, Italy)

Collaborators: V. D'Orazi (INAF-OAPD), G. Carraro (University of Padova)

The challenges of the analysis of young open clusters

In the last 15 years, the spectroscopic analysis of young (τ < 200 Myr) stars (both in open clusters OCs and in field) has shown some interesting features:

- 1. the (apparent) local anaemia of the ISM
- 2. the ionisation balance problem and the over-excitation effect (T_{eff} < 5400 K)

3. the barium puzzle

A new spectroscopic approach (Ti+Fe) -- Baratella et al 2020a

Active chromosphere and/or intense photospheric magnetic fields = alteration of strong lines forming in the upper layers of the photosphere

(Yana-Galarza et al. 2019, Baratella et al. 2020a, Spina et al. 2020)

ξ = WEAK AND STRONG FeI LINES HAVE SAME ABUNDANCE (maybe affected by magnetic intensification)

INCREASE ξ UP TO 2.0-2.5 KM/S (GIANT STARS)

STARS HAVE ARTIFICIALLY LOW [Fe/H] AND [X/Fe] THAT RESCALE ACCORDINGLY!!!

A new spectroscopic approach (Ti+Fe) -- Baratella et al 2020a

- T_{eff} from excitation equilibrium of Ti+Fe lines
- log g from ionisation equilibrium of Ti lines
- \&\xi\$ by imposing that weak and strong **Ti I lines** have the same abundance

FGK dwarf stars

Baratella et al. 2020a

A new spectroscopic approach (Ti+Fe) -- Baratella et al 2020a

Apparent METAL-POOR

nature of YOCs = results of
fundamental issues in the
spectroscopic analysis of
young stars

Trends of overabundances with logR'_{HK} -- Baratella et al 2020b

Main methodology used within the GAPS program (FGK dwarf stars)

(aim: monitor and study stars with ages less than 700 Myr to study hot and warm sub-Neptune planets in formation)

Teff = from 4718 K to 6000 K; $\log R'_{HK}$ from -4.17 to -4.78

Trends of overabundances with logR'_{HK} -- Baratella et al 2020b

Use of CH features for C abundances in cool and young stars (as in **Maldonado**, **Micela**, **Baratella et al. 2020** -- **HADES RV Programme:** derivation of M dwarfs abundances from FGK primary companion through PCA and sparse Bayesian methods)

The abundances of n-capture elements -- Baratella et al, in prep.

Cul, Srl and Srll, Yll, Zrll, Ball, Lall and Cell (FGK dwarf stars)

Shed light on the time-evolution of n-capture elements, in particular the s-process elements

Indication of a possible correlation with activity!!!

Predictions from nucleosynthesis and GCE models fail at reproducing the observed pattern

Implications on the use of chemical clocks at young ages, especially those based on Y and Ba

Conclusions

- Analysis of young stars is NOT straightforward
- Needs to revise the spectroscopic analysis techniques of stars with ages less than 200 Myr
- Poor knowledge of the main mechanisms behind these effects
- More observations needed to exploit all the spectral range and analyse in more details the link with the stellar activity
- Implications in different fields: GCE, study of linking relations host stars-planets, nucleosynthesis models ...

Thank you !!!